Fundamental differences between micro- and nano-Raman spectroscopy.
نویسندگان
چکیده
Electric field polarization orientations and gradients close to near-field scanning optical microscope (NSOM) probes render nano-Raman fundamentally different from micro-Raman spectroscopy. With x-polarized light incident through an NSOM aperture, transmitted light has x, y and z components allowing nano-Raman investigators to probe a variety of polarization configurations. In addition, the strong field gradients in the near-field of a NSOM probe lead to a breakdown of the assumption of micro-Raman spectroscopy that the field is constant over molecular dimensions. Thus, for nano-Raman spectroscopy with an NSOM, selection rules allow for the detection of active modes with intensity dependent on the field gradient. These modes can have similar activity as infra-red absorption modes. The mechanism can also explain the origin and intensity of some Raman modes observed in surface enhanced Raman spectroscopy.
منابع مشابه
Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering
Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studie...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملProbing the Interaction at the Nano–Bio Interface Using Raman Spectroscopy: ZnO Nanoparticles and Adenosine Triphosphate Biomolecules
With the advent of nanobiotechnology, there will be an increase in the interaction between engineered nanomaterials and biomolecules. Nanoconjugates with cells, organelles, and intracellular structures containing DNA, RNA, and proteins establish sequences of nano-bio boundaries that depend on several intricate complex biophysicochemical reactions. Given the complexity of these interactions, and...
متن کاملHigh-throughput graphene imaging on arbitrary substrates with widefield Raman spectroscopy.
Raman spectroscopy has been used extensively to study graphene and other sp(2)-bonded carbon materials, but the imaging capability of conventional micro-Raman spectroscopy is limited by the technique's low throughput. In this work, we apply an existing alternative imaging mode, widefield Raman imaging (WRI), to image and characterize graphene films on arbitrary substrates with high throughput. ...
متن کاملInvestigation of hydrothermal process time on the size of carbon micro- and nano-spheres
In this study, carbon nano-micro spheres with tightly controllable size, regular and perfect shape, high yields and narrow size distribution were prepared simply from glucose and DI water as precursors using a hydrothermal method. By setting the initial concentration of glucose solution and changing the hydrothermal process time at a constant temperature of 160 °C, carbon spheres with various s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microscopy
دوره 202 Pt 1 شماره
صفحات -
تاریخ انتشار 2001